HIVE Script Guide

To develop a HIVE video, we typically need two types of scripts for a project. First is the Teleprompter Script for green screen recordings. Second is the Editing Script for green screen and voice over recordings. Finally, we need all resources described in the Editing Script.

Teleprompter Script – This is the script you read from the teleprompter in the green screen studio. The ideal teleprompter script only contains text that is separated into natural speaking chunks. It is helpful to practice the scripts in advance. See example below.

Editing Script – During editing, the HIVE uses this script to create the final video. The Editing Script includes the text from a voice over or Teleprompter Script, with notes. The notes indicate placeholders for the resources such as images, slides, special effects, etc. which correlate to parts of the video. See example below.

Resources – To enhance your video, resources would include PowerPoint presentations, images, etc.

Please send all scripts and resources, with descriptive file names, to trefncycenter@gmail.com 24 hours before your scheduled recording.

---

Teleprompter Script Example

Title of video: Introduction to Proppants

Hello and welcome to [course name], I’m Dr. X, and in this video, I’ll be going over proppants.

Proppants are a critical component of hydraulic fracturing as they are the materials that “prop” a fracture open, providing the permeability needed to enhance production. Historically, our industry has used sand, quenched glass beads, iron shot, aluminum, plastic, and even walnut shells. However, when considering the requirements for a proppant, such as transportability and strength, not all proppants fit our needs.

Currently proppants used in the oil and gas industry include sand, intermediate strength proppants or ISP’s, and sintered clays and bauxites. Sand is currently used the most with well over 95% of the market share. We can also resin-coat sand and ceramic proppants to minimize proppant flowback and fines migration.

When considering the proppant to choose, we need to consider several factors including permeability, transport, strength, and cost. Figure 1 shows transport, strength, and cost points. Sand has a specific gravity of 2.65, strength of 6000 psi, and generally the lowest cost.

If sand suffices for the given well conditions, it’s a good choice. Intermediate strength proppants are close to sand in specific gravity, averaging 2.71, and therefore will transport similarly to sand.

Bauxite is the strongest proppant currently available, which crushes around 18,000 psi, sufficient for high pressure reservoirs. Its specific gravity, around 3.6, doesn’t transport well and generally has a fairly high cost.

In addition to sand, ISP’s, and bauxite, there are other specialized proppants developed to overcome some of the transport issues including lightweight proppants with specific gravities in the 1 to 2 range, which is very close to water on the low end. However, generally these proppants don’t have much strength associated with them and must be used with caution.
For a proppant to meet API specifications, approximately 90% of the particles, and specifically 89.9% of the particles, must sieve between the two numbers describing that proppant. For instance, the table shows the weight percent in solid red bars for a 20/40 proppant. The red hatched bars are the cumulative weight percent. As you can see in this case, well over 90% of the proppant falls between the 20 and 40 sieve sizes.

Editing Script Example

Title of video: Introduction to Proppants

Hello and welcome to [course name], I’m Dr. X, and in this video, I’ll be going over proppants.

Proppants are a critical component of hydraulic fracturing as they are the materials that “prop” a fracture open, providing the permeability needed to enhance production. Historically, our industry has used sand, quenched glass beads, iron shot, aluminum, plastic, and even walnut shells. However, when considering the requirements for a proppant, such as transportability and strength, not all proppants fit our needs.

Currently proppants used in the oil and gas industry include sand, intermediate strength proppants or ISP’s, and sintered clays and bauxites. Sand is currently used the most with well over 95% of the market share. We can also resin-coat sand and ceramic proppants to minimize proppant flowback and fines migration.

When considering the proppant to choose, we need to consider several factors including permeability, transport, strength, and cost. Figure 1 shows transport, strength, and cost points. Sand has a specific gravity of 2.65, strength of 6000 psi, and generally the lowest cost. If sand suffices for the given well conditions, it’s a good choice. Intermediate strength proppants are close to sand in specific gravity, averaging 2.71, and therefore will transport similarly to sand.

Bauxite is the strongest proppant currently available, which crushes around 18,000 psi, sufficient for high pressure reservoirs. Its specific gravity, around 3.6, doesn’t transport well and generally has a fairly high cost.

In addition to sand, ISP’s, and bauxite, there are other specialized proppants developed to overcome some of the transport issues including lightweight proppants with specific gravities in the 1 to 2 range, which is very close to water on the low end. However, generally these proppants don’t have much strength associated with them and must be used with caution.

For a proppant to meet API specifications, approximately 90% of the particles, and specifically 89.9% of the particles, must sieve between the two numbers describing that proppant. For instance, the table shows the weight percent in solid red bars for a 20/40 proppant. The red hatched bars are the cumulative weight percent. As you can see in this case, well over 90% of the proppant falls between the 20 and 40 sieve sizes.