Getting the Sage off the Stage: A New Interactive Course in Radiative Transfer

BACKGROUND

Missed Opportunity:
Despite coveted small class sizes, my graduate courses follow the “sage on the stage” model, with moderate in-class interaction.

Old Instructional Model:
- Lecture
- Worked Examples
- Discussion
- Passive
- Active

Learning outcomes drive:
- Content (not the text)
- Activities (in and out of class)
- Assessment

New Instructional Model:
- Lecture
- Worked Examples
- Discussion
- Group Work
- Individual Work
- Lab Work
- Passive
- Active
- Constructive
- Interactive

WHAT IS CHANGING

New Instructional Model:
- Lecture
- Worked Examples
- Discussion
- Group Work
- Individual Work
- Lab Work
- Passive
- Active
- Constructive
- Interactive

INTENDED OUTCOMES

Improved retention of information through more in-class interaction.

Application of in-class instruction in **labs and student projects**

Motivating content through **real-world examples**

Peer-to-peer interaction in **small group projects/discussions**

Learning outcomes drive:
- Content (not the text)
- Activities (in and out of class)
- Assessment

Example in-class activity:

Modeling Global Warming

- Activity type: group work & discussion

Learning outcome:
- Demonstrate absorption, emission, scattering, and wavelength dependence of radiation

Within the group:
- Diagram how global warming works

Group share:
- Identify major factors in global warming

Jason Porter is an associate professor of mechanical engineering and has been teaching at Mines since 2010. Jason teaches undergraduate heat transfer and has developed two new courses at the graduate level: Advanced Heat Transfer and Radiative Transfer. Jason’s research interests are in developing optical diagnostics for fundamental study and efficient control of energy systems.